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a renormalization group approach 
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M/S-A36, l200l Technology Drive, Eden Prairie, M N  55344, USA 
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Abstract. A hierarchical neural network model, presented i n  an earlier paper, is analysed 
using a renormalization group (na) approach. The RG method puts many oflhe previously 
found empirical results on a firm theoretical foundation. The functional dependence of 
the propagation of errors from one level of the  hierarchical tree to the next is derived and 
is shown to exhibit a phase transition. When the probability of entering errors at a given 
level exceeds some critical value, the error propagation is unbounded and will extend 
ihraughour the emire network, whereas beiow the crirical vaiue, rhe errors remain iocaiized. 
This result along with individual cluster updating data is used to explain the content- 
addreasability properties of the model. 

1. Introduction 

in an 
and retrieving an exponential number of stored states. The model, with origins from 
a n  earlier one proposed by Dotsenko [Z], is formulated o n  a spin-glass analogy, with 
its spins organized into a multi-tier cluster hierarchy such that for an N-spin network, 
the number of stored states is exponential in N. The network's ability to store an 
exponential number of states does not violate information capacity theorems [3] 

Because of the large number of stored states, it is important to understand not only 
the network's ability to content-address its stored memory patterns but how these states 
are retrieved. Empirical results from simulation experiments gave partial clues to the 
recall process but a firm theoretical foundation remained to be found. The purpose of 
this paper is to take steps toward establishing a theoretical base through the application 
of rer?orma!izatior? grocp (P-G) methods [4,5j. 

The RG approach can be used because of the hierarchical model's inherent scale 
invariant properties. In general, systems possessing scale invariance are often found 
to exhibit critical behaviour [4,5]. For the hierarchical model, this is indeed the case 
when we consider how errors propagate throughout the network. As will be shown, 
when the probability of entering errors at the base of the hierarchical tree exceeds 
Enme cr i t ica l  v~line t h e  ermrs -..... no ~.. loneer ~~~~D~ remain locally contained, but instead popagate 
up and invade the entire network. The static problem of the propagation of errors, 
when coupled with the recall probability of stored patterns for individual clusters, can 
be used to predict the content-addressability of network patterns involving all N spins, 
The method can satisfactorily explain the empirical content-addressability simulation 
results presented previously for the hierarchical model [ 11. 
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The paper begins with a brief review of the hierarchical model with emphasis on 
its construction using a renormalization approach. Next, we establish a method for 
determining how far errors, when entered at the base of the tree, will propagate 
upwards. For the static case, which does not involve updating, the spread of errors 
displays critical behaviour having a critical exponent which is then calculated. After 
explicitly including updating results from a single cluster, we then show how the RG 

approach allows one to predict, assuming a nearest-neighbour approximation, the 
global pattern recall properties of the network. We conclude by comparing simulation 
data with theoretical predictions and then discuss the results. 

2. The model 

The model presented here is based on the hierarchical model introduced in [l]. In the 
present model the branching size k, however, is kept fixed to simplify the discussion, 
although the extension to arbitrary branching at  each level is straightforward. The 
construction of the tree begins with a starting cluster or replication cell having k 
binary-state neurons, which we shall call spins, s, where, i = 1,2 , .  . . , k and can only 
assume the values *l. Coupling the k spins is a square storage matrix J ,  storing p,  
k-spin vector states {s!.')}, r =  1,2, .  . . , p  according to the usual Hebbian rule [6], 

J, . -  f: s ~ ' ) ~ ~ . ' )  i # j  (2.1) 
r= ,  

with .Iti defined to be zero when i = j .  Through (2.1) the matrix J ,  contains a total of 
k ( k  - 1) programmed entries, z!though only half of these are independen! becanse of 
the symmetry under interchange of i and j .  In addition, each of the stored cluster states 
are Constrained to having a specified magnetization M given by 

Spins within a ciuster are chosen at  random and updated according to 

If s , ( f+  1) evaluates to zero, our convention is to leave the spin unchanged. The cluster, 
therefore functions like a Hopfield [7] net comprised of k spins and storing p,  
k-dimensional vector states having magnetization M. 

Now consider a hierarchical tree network, of which the first two levels are shown 
in figure 1. The nth topmost node and its branches, represent a cluster having k effective 
spins, also denoted by s, which are computed from the normalized magnetizations 
belonging to the states of k clusters that form the set of nodes and branches at the 
next lower n - 1 level of the tree. That is 

M ,  
I IM4I 
s =- 

defines the effective spins, where the i index above, now refers to one of the k clusters 
at the n - 1 level. Therefore, at each subsequent level one simply treats the spins 
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Figure 1.  Graphical depiction of the first two levels of a hierarchical tree showing the nth 
topmost cluster and k, n - 1 level clusters. Ellipses denote spina or clusters not explicitly 
shown. 

belonging to a given cluster as effective spins which are computed from the normalized 
magnetizations belonging to the set of clusters occupying the next level down. The 
tree ends after reaching the first level or bottom, where the spins are now the actual 
network spins of the model. 

All clusters regardless of their level in the tree are updated according to (2.3), with 
the cluster coupling matrices defined using (2.1), keeping in mind that the s, represent 
effective spins unless we are at the bottom branch end points of the tree, where they 
represent ne!work spins. To avoid no!z!ioEz! c!u!ter, we wi!! no! zdd speciz! c!cs!er 
identifying labels to each of the J,  matrices or effective spins unless necessary. 

Note that even though the spins are renormalized at each level as we advance from 
one level up to the next, the coupling matrices, however, are not rescaled proportionately 
to those occupying the previous level. Instead, each coupling matrix is programmed 
independently using (2.1). Updating any given cluster can be performed independent 
of the clusters; from which its effective spins are computed, because the symmetry 
(under i u j )  of the cluster coupling matrix allows for either sign of the cluster state 
magnetization, hence, the cluster effective spins can take on any value desired. 

We should emphasize that the RG formalism has not been introduced forthe purpose 
of reducing the dimensionality of the network. The intention is to show how the levels 
are inter-dependent on one another and as will be clear later, explain how errors 
propagate throughout the network. 

To compute the number of stored network states, observe that for a two-level tree, 
there are a total of N = k2 spins comprising a given network state. These spins form 
the bottom branch end points (first level) of the tree. There are k clusters at the first 
level and one cluster at the second and therefore two levels capable of storing 
information, so if each cluster stores p states, the total number of network states stored 
by a two-level model is p .  p k  = p k t ' .  Generalizing to an n-level tree having N = k" 
spins and using the geometric progression, the total number of stored states, denoted 
by N, is then 

(2.4) 

Note the distinction between network states and cluster states: the former involves all 

N, = p ( N - l ) / ( k - l )  
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N spins of the network, whereas the latter involves only k spins belonging to a particular 
cluster. 

The superscript factor (N - l ) / ( k  - I )  in (2.4) is the total number of clusters present 
in the network. Multiplying this factor by the number of programmed I,, matrix elements 
stored per cluster gives k .  (N - 1) for the total number in the hierarchical network 
which is less than that of a standard Hopfield model with N spins whose J,, contains 
N x (N - I )  programmed entries. This suggests that in spite of the greater number of 
stored states, the hierarchical model actually stores less information than a standard 
Hopfield model with an equivalent number of spins. The information content per 
stored state is low because the states are highly correlated. Moreover, these correlated 
states can be embedded within an ultrametric topology. This aspect as well as a rigorous 
calculation of the information capacity has already been covered in reference [I]. 

Starting from an arbitrary initial configuration of spins, updating the network can 
proceed several ways, of which only one will be mentioned here. The following method 
is somewhat easier to implement than the one used in our earlier paper [l]. The 
procedure used for all our numerical simulations began by randomly selecting and 
then updating from I to f + 1 each of the effective spins s J I )  belonging to the topmost 
(nth-level) cluster of the tree using (2.3). Since each effective spin is the sign of the 
magnetization of the next lower level cluster state, the sign of all effective spins 
belonging to this lower level cluster must change according to 

where the subscript on the i indext is used to distinguish effective spins at different 
levels and the quantity in square brackets is minus 1 if the n - 1 level magnetization 
(denoted by M,, , )  must change sign and plus 1 if not. Of course a cluster index should 
also be present which we do  not show. The next step is to update the set of clusters 
(at the n - 1  level) and their effective spins s + , ( t )  again using (2.3) followed by 
application of (2.5) only with n +  n - l  and n - 1 -  n -2. This updating process is 
continued down the tree and terminated after updating the individual spins belonging 
to the lowest (first) level clusters in the network. The above process is then repeated 
successively until the entire network becomes stable. 

3. Error propagation (static case) 

The renormalization method can he used to analyse how errors (in the form of random 
spin Rips) introduced at one level, induce errors at subsequently higher levels. To he 
more specific, the problem we address i s  the following. Given an n-level network 
comprised of clusters storing p = 2 states each, we ask what is the collective effect on 
the network of starting with a particular stored network state, of which there are N, 
choices and then Ripping each spin (si+ -si) with some given probability. At the 
moment, we only consider the static problem which does not include updating. In 
response to the probabilistic flipping of first level spins, there will be some prohahility 
PM that the sign of the magnetizations of the first level cluster states will change. 
According to our renormalization approach, PM becomes the probability of Ripping 

t Here the first level spins are labelled as s , ,  because the level index starts at m = l .  When referring to 
reference [I], beware of a change in notation where the level index starts with m = O  rather than 1. 
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the effective spins for clusters at the next higher level. For the general case we label 
these probabilities at the mth level by P E ' .  

The probability that the sign of a cluster state magnetization will change depends 
on k and on the magnitude of the magnetization M of the stored states. The derivation 
of this probability is given by equation (A31 in the appendix. As a specific example, 
we plot in figure 2, with a full curve, PE+" against P E )  for the case k = 15 and M = 7 .  
The curve has an 'S'shape with three fixed point solutions to the equation PE" '  = P E ' ,  
namely 0, 1 and P,. The critical point at P,=0.5 marks the onset of a second-order 
phase transition. 
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Figure 1. The full curve indicates the dependence of [he probability of spin Rips for the 
m + I level cluster Pc*" on the spin flip probability of the m level cluster Pg' forclusters 
having k = 15 spins and states constrained lo M = 7. The broken curve shows simulation 
results far the probability of a perfect recall Pr(P!;') from a k =  15 spin single level cluster 
network storing p = 2 states as a function of Pg'. The square boxes are second level 
percentage recalled perfectly P!2'simulation results from a two level, N = 225  spin network. 

Values of PE' below P, will give PE;"" values less than PE'  and will lead, 
therefore, to the containment of errors. In contrast, when PE' is above P,, the error 
propagation is unbounded, extending all the way up the tree. This is a catastrophic 
failure and is similar to that found for loaded fractal trees [SI. As an example, successive 
iterations of equation (A3) using k = 15 and M = 7  takes P',-'=0.2 into PE+"=0.088, 
PEMzJ = 0.008, P E i 3 ' =  0.000 0018 and rapidly approaches zero (i.e. the errors are 
contained) as m increases. On the other hand, starting with P E '  = 0.6 the sequence 
becomes Pg;"" =0.646, P$i2J =0.712, PE+" =0.805, PE+"= 0.916 which tends to 
a probability of one (i.e. the error propagates up the tree) as m increases. 

For starting values of P,,, less than P,, the maximum number of levels invaded by 
errors can be characterized by a propagation length L. The propagation length remains 
finite for PM less than P, but increases rapidly as PM approaches P, from below and 
can be described by a power law, 

L oc (P, - PM)-" (3.1) 
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having a critical exponent v. For the particular case with k = 15 and M = 7 the critical 
exponent v has the value 7.075 28. Varying the values of k and M yield different values 
of v. The details of calculating v are relegated to appendix B. 

4. Error propagation (dynamic case) 

So far, we have only considered the static problem of how the introduction of spin 
flip perturbations at one level will change the configuration of spins at subsequently 
higher levels. The dynamic problem of how the network responds during updating to 
this static perturbation of spins is considered next. What we now address is the process 
of pattern retrieval in the hierarchical model. The case considered below deals with 
the probabilistic flipping of spins belonging to some nominal target pattern and should 
be contrasted with the situation where a prescribed number of spins are flipped to 
form a desired overlap with the target pattern. The farmer case is preferred here because 
it preserves the scale invariance of the analysis. The latter is compatible with traditional 
treatments of the content-addressability of stored patterns and is covered in the 
discussion. 

For the dynamic case we can again take advantage of the scale invariant properties 
of the network. From ihe siatic anaiysis, we know how ihe ciuster states at each ievei 
will be affected by an initial perturbation of first level cluster spins. If we know how 
well an individual cluster can recall nominal target patterns as a function of the 
probability that spins in the target pattern initially are flipped, then in principle, we 
should be able to predict how the entire network recalls its stored patterns. The success 
of this prediction rests on the degree to which a nearest-neighbour interaction approxi- 

spins only interact with other spins belonging to the same cluster. 
When the updating approach, such as the one described in section 2, makes multiple 

passes through the network before reaching a stable configuration of spins, then the 
nearest-neighbour interaction assumption is only approximate. A weak long-range 
interaction can arise because of the multiple sweeps through the network. As lower 

that the state that an upper level cluster begins with on its next updating epoch is not 
simply a function of its initial spin configuration and individual cluster recall probabil- 
ity, but also depends o n  the recall performance of the lower level clusters. As we will 
see, in spite of these long range interactions, predictions assuming the N N I A  are 
surprisingly accurate. 

The firs! step is to gather d&a e!? how -we!! in individui?! c!uster c in  reci?!! nomina! 
target patterns as a function of the probability that spins in the target pattern initially 
are flipped. The broken curve in figure 2 shows the simulation results for the probability 
Pr(Pc") of realizing the perfect recall of a target pattern after perturbing each of the 
k spins with probability equal to PE1. In this simulation, the cluster had k =  15 spins 
and stored p = 2 randomly selected state vectors, each with M = 7. Including the two 
cafljug~!e s!z!ps (i.e. {:!.'1;+ -{s:.'])) there !hen a total of four possible states that 
can be recalled by this cluster. Because only two states are stored per cluster, the 
problem of spurious states does not arise, therefore only stored states, or their conju- 
gates, will occur. 

Both curves in figure 2 can now be used to predict, in the NNIA,  how the entire 
network should behave dynamically in response to an initial static perturbation of 

I . . . . . .  \ :- _ _ ^ I : >  I _  .L:^ : :--- --- .̂,,.,I _ ^ ^ _ ^ ^ &  ..-:-LL : r  
LIIdLIVrI ( N N l A )  15 Y d L L U .  111 U115 CUIIIC-AL, LIllCldLLIUIIS d l C  Gill<" I I C d l C S L  r lClgUUUU1 11 
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network spins. If we let Pi"' be the percentage of mth level states recalled perfectly, 
where an mth level state involves all effective spins at the mth level, then it is easy to 
see that the general expression for P!"' is given by 

We can use (4.1) to estimate the probability of peri'ectly recalling mth level states 
for arbitrary hierarchical networks. As our first example, numerical simulations were 
carried out on a two-level network having N = 225 spins with a branching scale factor 
of k = 15. Each cluster stored p = 2 states with A4 fixed at 7. This network can store 
N, =216 states. In figure 2 we show with arrow traces, the predicted second level 
Pi2' = Pr(Pf,)) recall probability results for a two-level network assuming three different 
starting spin flip probabilities PG) = 0.2, 0.4 and 0.6. These map into PE' = 0.09, 0.35 
and 0.65 probabilities respectively and when projected onto the broken curve, predict 
the probabilities P?) = 0.99, 0.63, 0.04 respectively, of perfectly recalling second-level 
states. The small square boxes mark the corresponding Pi" = 0.99, 0.59, 0.05 results 
found during the numerical simulations of the above two-level network and show good 
agreement. 

Using (4.1), we can also predict the probability P i ' )  of a perfect recall in the 
first-level state (i.e. network state). Explicitly, PY' is equal to (Pr(PL'))k.  (Pr(P5')) '  
which evaluates to (0.93)" (0.99) =0.33, (0.51)" (0.63) =O.O and (0.09)'' (0.04) = 
0.0 when Pf,' = 0.2, 0.4 and 0.6 respectively. Again, satisfactory agreement was found 
with our simulation results which gave perfect recall values of 0.23, 0.0 and 0.0 
respectively. The same two-level network only with M = 3 instead of 7 was also 
examined as well as a three-level network with k = 5 and A4 = 1 and 3. The predicted 
and simulated results for these other networks are also in satisfactory agreement and 

Table 1. Tabulated Y B I U C S  of the percentage of stared states recalled perfectly for two level 
( k = I S w i t h  M = 7 , 3 J  and threelevel ( k = 5 w i t h  M = 3 ,  1)networkrarafunctionofthe 
first level spin Rip probability P!&'. The predicted results, assuming a nearest-neighbour 
approximation (NNIA), and actual simulation recall data are shown. The P?' values are 
the percentage of mth level states recalled perfectly as defined in equation (4.1). 

Percentage recalled perfectly 

Predicted (NNIAJ  Simulated 

M p ! 2 1  p' p", p y  p p  Levels k M 

2 I5 7 0.2 
0.4 
0.6 

3 0.2 
0.4 
0.6 

0. I 
0.2 

0.1 

3 5 3 0.05 

I 0.05 

0.33 0.99 
0.0 0.63 
0.0 0.04 
0.25 0.81 
0.0 0.40 
0.0 0.13 
0.25 0.94 1.0 
0.04 0.77 0.99 
0.0 0.35 0.90 
0.07 0.26 0.62 
0.0 0.07 0.46 

0.23 
0.0 
0.0 
0.27 
0.0 
0.0 
0.13 
0.03 
0.0 
0.07 
0.02 

0.99 
0.59 
0.05 
0.89 
0.45 
0.10 
0.90 1.0 
0.70 0.99 
0.33 0.91 
0.39 0.63 
0.17 0.47 

0.2 0.0 0.01 0.35 0.0 0.06 0.40 
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have been tabulated in table 1. All simulations predicted in table 1 were carried out 
using the top-down updating procedure described in section 2 and involved roughly 
200 simulations per data point. 

5. Discussion 

Through appropriate choices of k and M values in equation (A3), the spin flip 
probability a t  the m + 1 level can be made to be always less than the spin flip probability 
at the mth level, provided the spin Hip probability at the first level remains below its 
critical value. When this condition is satisfied, the probability of recalling higher level 
states improves with increasing m (i.e. P?'< Pi""', m = I ,  2 , .  . . , n - 1). The sig- 
nificance of this in content-addressing applications is that even though some of the 
bits have changed (i.e. 'details' are lost) in the recalled network state, the 'rough image' 
of the original unperturbed state is preserved. 

This ties in with what was called the ultametric rule in [ l ]  which stated that higher 
level states (or magnetization states as referred to in [l]) are more likely to he recalled 
correctly over those at lower levels. In addition, referring to (4.1) it can be seen that 
Pi"' has a tendency to increase anyway, for increasing m, simply from the fact that it 
depends on fewer clusters as m increases. Hence, even though we may be in a region 
where PE;"' is greater than P E ' ,  the upper levels may still recall patterns better. 

As a further check on the utility of the RG approach in predicting network recall 
performance, we compared theoretical expectations with empirical data taken from 
simulations presented in [l]. These simulations were intended to demonstrate how the 
network's associative recall ability, starting from perturbed nominal target patterns, 
was dependent on the first level cluster size, second level cluster size and the magnitude 
of the first level cluster state magnetization. For these particular network simulations, 
the analysis had to take into account the different method of initially perturbing the 
target patterns. In [l], the percentage of states recalled successfully was determined 
as a function of the overlap between the starting state and some nominal target pattern, 
whereas, in the simulations studied in section 4, the first level spins were each Hipped 
with some probability PL'. 

When the overlap is given, the number of first level spins that are flipped is also 
known. This changes the expression for determining the probability that the sign of 
the magnetization of thefirst level cluster state will change. In this case, the probability 
is determined by summing P,(f'), as given by (A I ) ,  over f ' , where the summation 
range for f t  is the same as used in (A3). Expression (A3) is not used for the first level 
clusters in  this case since f is known from the initial overlap. 

With the exception of the above change, the theoretical analysis of the hierarchies 
in [ I ]  followed the same procedures as outlined in the last two sections. The resulting 
predictions of the content-addressability of stored patterns were in general accord with 
the simulation results. We could satisfactorily predict observed recall behaviour as the 
cluster branching size and magnetization were independently varied. 

We have already mentioned that the updating approach described in section 2 and 
used in all of the simulations presented in table 1 can lead to long range interactions 
making the assumption of nearest-neighbour interactions only approximate. This is 
also true for the method used in [I] .  This need not, however, always be the case. By 
updating from the top-down each cluster sequentially such that all clusters at a given 
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level are stabilized before (2.5) is applied and then moving down to the next level, the 
problem of long range interactions can be avoided. 

In conclusion, we find that the globally complex hiearchical model is easy to analyse 
because of its inherent scale invariant properties. For the examples studied here and 
in [l], the N N I A  appears to work well even when different updating methods are used. 
The renormalization approach allows results obtained on individual Hopfield network 
simulations to be used to predict global properties of the model and can be utilized 
..,La.. -axa-.:.,- L:" ---- L:",., -- . . . . --I_ "..-A*...- 
W1.C.. UCJ'&""1& C I L F C L l l C i  ,,,CI'a,CIIIL'lI L lCUld l  IIC-LWVIr. sy>rGrlrb. 

Appendix A 

We wish to find the probability that a cluster of size k and initial magnetization M 
will go to a new magnetization M '  after flipping f spins at random, but never the same 
spin twice. To evaluate this probability, we suppose that the cluster state contains 
n t - ( k + M ) / 2 p l u s  1 spinsand n--(k-M)/2minus 1 spins(sothat n + - n - = M )  
and ask for the probability of finding f' plus 1 spins and f' = (f- f ' )  minus 1 spins 
out o f f  random selections. This probability has been explicitly derived in [I], and 
works out to be simply the hypergeometric distribution 

p, (f') = ( n + ) (  k - n * ) (  k)-i 
f' f - f '  f 

where 

a !  (ba) b ! ( a - b ) !  

and it is assumed that b < a otherwise the binomial coefficient is defined to be zero. 
Note that Pr(f+) is also the probability that given f' spins and f selections, the 

magnetization goes from M = n+- n-  to M' where, 

M'= ( n t - f t +  f -) - ( n -  - f -+ f +) = M -2(2f +-f). (A21 

If we sum P, ( f ' )  over all f' greater than (f/2+ M/4),  but less than f; and then 
multiply by the probability of getting exactly f spins flipped out of IC, given that the 
probability of flipping one spin is PE',  and finally summing over all spins within the 
cluster, we will get the probability of changing the sign of the cluster magnetization 
P(M+'). Explicitly written out this becomes, 

where the sum over f + begins at the next integer greater than ( f / 2  + M/4). In the 
event that this evaluates to greater than f; then the contribution to the sum for this 
value of f  is zero. 

Appendix B 

The calculation of Y depends on the renormalization scale factor and on the probability 
of changing the cluster state magnetization. For our case, the renormalized propagation 
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length obeys, 

1 
k 

L(P‘ ,+”)=-  L(P’,’) 

where k is the scaling factor and P(M+” is the probability of changing the cluster 
magnetization at the m + 1 level defined in (A3). Once k and P(Mm+” are established, 
the computation of Y is straightforward. Following Kogut and Wilson [4], when PM 
is ciose to 1‘, we can expand about Pc with a iinear approximation, 

(B2) p‘,+’) = p, - A( p, - PE1) 
from which A is then given by 

and Y follows from u = l n ( k ) / l n ( h ) .  For k =  15 and M =7, we obtain using (B3) and 
(A3) A = 1.466 30 from which U = 7.075 28. 
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